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Motivating Applications: Radiation Biology

Problem: Quantify effects of radiation on cells by 
analyzing presence of proteins known to play crucial 
roles in DNA repair.

Data: Proteins in cell cultures are tagged with 
fluorescent probes, stained, irradiated, imaged.
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Biological Challenge:
High Throughput Microscopy Analysis

Ki67ATMp gammatubulin
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• Radiation dose/quality: high vs. low, Xray photons 
(sparse) vs. heavy charged particles (dense)

• Microscopy: fluorescence, confocal, deconvolution
• Time course
• Cell type and stage of mitotic cycle
• Direct vs. indirect effects of radiation
• Sample preparation

Sources of Image Variation
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• Radiation dose/quality: high vs. low, Xray photons 
(sparse) vs. heavy charged particles (dense)

• Microscopy: fluorescence, confocal, deconvolution
• Time course
• Cell type and stage of mitotic cycle
• Direct vs. indirect effects of radiation
• Sample preparation

Sources of Image Variation

early foci late foci (Petrini & Stracker, 2003)
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Mathematical Challenge

• Current microscopy analysis: easy to design ad hoc, 
heuristic methods to get quick scientific results.

• Disadvantage: special purpose tools are designed for 
each new biological research question.
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Mathematical Challenge

• Current microscopy analysis: easy to design ad hoc, 
heuristic methods to get quick scientific results.

• Disadvantage: special purpose tools are designed for 
each new biological research question.

• Mathematical models: can yield general solutions to a 
greater range of scientific questions and data.

• Future microscopy analysis: must move away from 
patchwork of image processing tools and toward 
principled statistical modeling and analysis.
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Outline

1. Microscopy Analysis: Biological and 
Mathematical Challenges

2. Current Approach: Microscopy Image 
Analysis Application

3. Statistical Approach: Background

4. Statistical Approach: Preliminary Results

5. Current Directions



March 5,  2005

Foci Analysis Application



March 5,  2005

Foci Analysis Application

Pros
• Achieves high-accuracy foci detection for variety of large 

image sets

• Automatic collection of foci statistics (size, intensity, 
contrast, quantity per nucleus)

• Currently in use by radiation biologists (Costes, et. al., 
Bioastronautics Investigators’ Workshop, 2005)
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Foci Analysis Application

Pros
• Achieves high-accuracy foci detection for variety of large 

image sets

• Automatic collection of foci statistics (size, intensity, 
contrast, quantity per nucleus)

• Currently in use by radiation biologists (Costes, et. al., 
Bioastronautics Investigators’ Workshop, 2005)

Cons
• Parameters adjusted by user can bias results

• Designed for a specific type of feature

• Toolbox approach not easily extendable to other tasks
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Feature Detection via Filter Banks
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Feature Detection via Filter Banks
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Outline

1. Microscopy Analysis: Biological and 
Mathematical Challenges

2. Current Approach: Microscopy Image 
Analysis Application

3. Statistical Approach: Background

4. Statistical Approach: Preliminary Results
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Independent Components Analysis (Comon, 1991)

• Use statistical criteria to define optimal basis for 
decomposing images into combinations of basis functions

• Optimization yields multi-oriented, multiscale, bandpass 
basis functions specifically tuned to data set

How to Learn Basis From Data?
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Independent Components Analysis (Comon, 1991)

• Use statistical criteria to define optimal basis for 
decomposing images into combinations of basis functions

• Optimization yields multi-oriented, multiscale, bandpass 
basis functions specifically tuned to data set

• More localized than Fourier filters , arbitrary frequencies 
and orientations, unlike Gabor and wavelet filters

How to Learn Basis From Data?

Sparse Coding (Olshausen-Field, 1996)

Independents Components Analysis (Bell & Sejnowski, 1997)

example 
basis 

functions
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Independent Components Analysis

• Consider an arbitrary NxN subimage of a sample 
image for fixed N:
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Independent Components Analysis

• Consider an arbitrary NxN subimage of a sample 
image for fixed N:

• Treat each subimage as an observed vector variable 
x that is a mixture of unknown basis functions ai with 
unknown coefficients si

1s 2s ns
nnsss aaax  2211
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Independent Components Analysis

• Consider an arbitrary NxN subimage of a sample 
image for fixed N:

• Treat each subimage as an observed vector variable 
x that is a mixture of unknown basis functions ai with 
unknown coefficients si

1s 2s ns
nnsss aaax  2211

• Unknowns: basis functions ai and coefficients si

• Given: only observations x

Asx 
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Optimization

• Express unknown coefficients in terms of inverse W
of unknown mixing matrix A

Asx 

• Coefficient estimates s* are called independent 
components

Wxs *
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Optimization

• Express unknown coefficients in terms of inverse W
of unknown mixing matrix A

Asx 

• Coefficient estimates s* are called independent 
components

• Optimize a function J(s*) that encourages the 
independent components to be as non-Gaussian as 
possible

Wxs *
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Non-Gaussianity: What and Why?

),,( 21 mxxx x

sample subimage
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Non-Gaussianity: What and Why?

),,( 21 mxxx x

sample subimagebasis function direction

ia
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Non-Gaussianity: What and Why?

• Projection pursuit: random subspace projections of 
structured point clouds are typically Gaussian
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Non-Gaussianity: What and Why?

• Projection pursuit: random subspace projections of 
structured point clouds are typically Gaussian

• Interesting projections are not Gaussian, e.g., mixture 
of Gaussians for cluster discrimination
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Non-Gaussianity: What and Why?

• Salient features 
may lie along 
non-Gaussian 
dimensions
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Non-Gaussianity: What and Why?

• Interesting directions 
are not Gaussian, but 
peaky, heavy-tailed, 
super-Gaussian 
distributions, e.g. 
Laplacian

• Salient features 
may lie along 
non-Gaussian 
dimensions
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Recall: Optimization Constraints

Asx 

1s 2s ns1a 2a nax

• Optimize a function J(s*) that encourages the 
independent components to be as non-Gaussian as 
possible 

• Output: basis functions and independent components
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Non-Gaussianity: Contrast Functions

Entropy: measure of how 
random vs. structured a 
random variable is

yyyy d)(log)()( ffH 

Negentropy: difference in 
entropy w.r.t. Gaussian with 
same variance

)()()( gauss yyy HHJ 
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Non-Gaussianity: Contrast Functions

Entropy: measure of how 
random vs. structured a 
random variable is

yyyy d)(log)()( ffH 

Negentropy: difference in 
entropy w.r.t. Gaussian with 
same variance

)()()( gauss yyy HHJ 

FastICA: A. Hyvärinen. Fast and Robust Fixed-Point Algorithms for Independent 
Component Analysis. IEEE Transactions on Neural Networks 1999.
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Independent Components
of Microscopy Imagery

Goals

• Represent salient features characterizing cell 
differences, e.g. foci

• Distinguish differently treated cells and images

• Design task-specific algorithms: feature extraction,  
cell and image classification
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Preliminary Test

Control Group Dose: 30cGy, Time: 10min

• Input data: 15x15 pixel subimages within nuclei

• Centered at local maxima

• Small training set (~1000 subimages each)
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Example Microscopy Basis Functions

Basis Functions
Control Group

Basis Functions
Dose: 30cGy, Time: 10min

• Subimages centered and whitened (decorrelated, unit variance)

• Data dimensionality may be reduced by PCA

• Basis functions defined up to unknown sign ambiguity
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Large Data Set

• ~100 1.3 Mb images

• 9 classes (varying dose/time 

treatment groups)

• ~10 images per class

2 training, 8 testing

• ~10,000 15x15 subimages

• random sample of  ~2000 

training examples

• dimensionality reduction by PCA 

from 225 to 20
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Large Data Set

• ~100 1.3 Mb images

• 9 classes (varying dose/time 

treatment groups)

• ~10 images per class

2 training, 8 testing

• ~10,000 15x15 subimages

• random sample of  ~2000 

training examples

• dimensionality reduction by PCA 

from 225 to 20

Basis Functions
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Independent Component Distributions
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Classification by Maximum Response

Sample Subimages: FG Class Sample Subimages: BG Class

Sample IR  
Nucleus

Sample Sham 
Nucleus
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Classification by Maximum Response

Sample Subimages: FG Class Sample Subimages: BG Class

Sample IR  
Nucleus

Sample Sham 
Nucleus
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Validation
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Conclusions and Current Directions

• Promising statistical method for learning 
representation of salient features.

• Away from  hand-designed, problem-specific tools, 
toward general purpose solutions.

Next
• Applications to broad variety of imagery
• Feature extraction algorithms
 subimage classification for feature detection
 multiscale analysis
 validation of accuracy/precision

• Cell and image classification: Bayesian modeling of 
treatment groups
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Future Work: Bystander Effect
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Thank You
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Current Directions: Engineering

• Usability: trade-off between flexibility and simplicity.  
e.g. trainable vs. interactive vs. fully automatic

• Cross-platform implementation integrating analysis, 
visualization, browsing

• VTK/ITK open source commercial-grade libraries 
developed in medical imaging community

• Capability for distributed and parallel computing for 
large data sets
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Feature Detection via Filter Banks

Parameters:

: Gaussian standard deviation in x-direction
: Gaussian standard deviation in y-direction
: sinusoid wavelength
: filter orientation
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Image Processing Approach

gammatubulinH2AXATMp

• Geometric nucleus segmentation provides local context
• Foci detection via intensity statistics and locally adaptive 

thresholds
• User preferences for adapting software to data set
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Feature Detection via Filter Banks

Gabor Wavelet Function
sinusoid modulated by Gaussian envelope

1D 2D
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FastICA Implementation

A. Hyvärinen. Fast and Robust Fixed-Point Algorithms for Independent 
Component Analysis. IEEE Transactions on Neural Networks 10(3):626-
634, 1999.

• Maximizes approximation to negentropy: easy to 
compute, compromise between negentropy and 
kurtosis

• Data pre-whitened and reduced with classical PCA

• Fixed-point optimization, block-mode computation

• Parallel and distributed

• Cubic convergence rate

• c is a constant, v is a zero-mean, unit-variance 
Gaussian variable, G is a non-quadratic function

2)}]({)}({[)( vyy GEGEcJ 
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Features with High Response

Control Group
Dose: 30cGy
Time: 10 minutes
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Bystander Experiment
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Bystander Experiment
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Response Histograms
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Classification by Maximum Response

Sample Images: Class 1
(less Gaussian)

Sample Images: Class 2
(more Gaussian)
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Validation
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Learned Basis vs. Filter Bank

Learned Basis Functions

2D Gabor Kernel

2D Laplacian of Gaussian

How do learned basis functions compare to typical filter 

bank kernels?


